If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-288x+448=0
a = 5; b = -288; c = +448;
Δ = b2-4ac
Δ = -2882-4·5·448
Δ = 73984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{73984}=272$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-288)-272}{2*5}=\frac{16}{10} =1+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-288)+272}{2*5}=\frac{560}{10} =56 $
| r^2−r−7=0 | | 16+a=2 | | 2-a=16 | | 24/c=6 | | 0.2x+9=0.6x-9 | | x^2+18x+360=0 | | a-2=16 | | (7x-9)=119 | | -2/10x+9=3/5x-9 | | 6=7j | | 7j=6 | | j*7=6 | | 7+a=11 | | 19x+(14x-6)=51 | | -8x+7=2x+16 | | 5000+.06x=6500.04x | | .8x+72=x | | -0,5x+1=0,75x-17 | | 0.17b=5.10 | | 0,005x=4.90 | | X^2+7=7x | | (x+94)+(40+x)=128 | | (X-3)(x-4)=x2+4 | | (x+87)+(x+38)=101 | | 6+2u=6+2u+2 | | (x+36)+(x+60)=72 | | 3x+16+4x+14+5x-30=180 | | 6y+10=3y | | 8x-4=12x12 | | 6v^2−4v−1=0 | | (x+33)+(x+159)=174 | | 6v2−4v−1=0 |